A Lower Bound on the Growth Exponent for Loop-erased Random Walk in Two Dimensions
نویسندگان
چکیده
The growth exponent α for loop-erased or Laplacian random walk on the integer lattice is defined by saying that the expected time to reach the sphere of radius n is of order n. We prove that in two dimensions, the growth exponent is strictly greater than one. The proof uses a known estimate on the third moment of the escape probability and an improvement on the discrete Beurling projection theorem. Résumé. L’exposant de croissance α pour la marche aléatoire à boucles effacées ou “laplacienne” sur le réseau Z est défini de la manière suivante : le nombre moyen de pas au moment où la marche issue de l’origine atteint la sphère de rayon n est d’ordre n lorsque n tend vers l’infini. Nous montrons que lorsque d = 2, l’exposant de croissance est strictement supérieur à 1. La preuve utilise une estimation connue concernant le moment d’ordre trois de la probabilité de fuite, ainsi qu’un raffinement de la version discrétisée du théorème de projection de Beurling. AMS Subject Classification. 60J15. Received April 10, 1998. Revised September 21, 1998.
منابع مشابه
The growth exponent for planar loop-erased random walk
We give a new proof of a result of Kenyon that the growth exponent for loop-erased random walks in two dimensions is 5/4. The proof uses the convergence of LERW to Schramm-Loewner evolution with parameter 2, and is valid for irreducible bounded symmetric random walks on any discrete lattice of R2.
متن کاملTwo-sided loop-erased random walk in three dimensions
The loop-erased random walk (LERW) in three dimensions is obtained by erasing loops chronologically from simple random walk. In this paper we show the existence of the two-sided LERW which can be considered as the distribution of the LERW as seen by a point in the “middle” of the path.
متن کاملDistribution of sizes of erased loops of loop-erased random walks in two and three dimensions.
We show that in the loop-erased random-walk problem, the exponent characterizing the probability distribution of areas of erased loops is superuniversal. In d dimensions, the probability that the erased loop has an area A varies as A(-2) for large A, independent of d, for 2< or =d< or =4. We estimate the exponents characterizing the distribution of perimeters and areas of erased loops in d=2 an...
متن کاملThe infinite two-sided loop-erased random walk
The loop-erased random walk (LERW) in Zd, d ≥ 2, dimensions is obtained by erasing loops chronologically from simple random walk. In this paper we show the existence of the two-sided LERW which can be considered as the distribution of the LERW as seen by a point in the “middle” of the path.
متن کاملThe scaling limit of loop-erased random walk in three dimensions
Loop-erased random walk is a model for a random simple (i.e. non-selfintersecting) path created by taking a random walk and, whenever it hits itself, deleting the resulting loop and continuing. We will explain why this model is interesting and why scaling limits are interesting, and then go on to describe the proof (that the limit exists), as time will permit.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998